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Note 

A Simplified Shooting Method 
for the Diatomic Eigenvalue Problem 

Among the methods proposed to solve the diatomic vibration-rotation eigen- 
value problem, the Cooley shooting method [ 1 ] is still the most used by molecular 
physicists. In his method, Cooley considers the radial Schrodinger equation 

(d2/dr2 + (E- U)) y(r) = 0, (1) 

where U(r) is the given potential, r is the internuclear distance, and E is the eigen- 
value to be determined under the y boundary conditions 

Y(O) = 0, y(r) + 0 as r--boo (2) 

For an arbitrary value of the “parameter” E, Cooley starts the integration of 
Eq. (1) at rs- 0 with the initial values y(r,) = 0, y’(r,) = c (a given constant); he 
computes y(r) out to an arbitrary point r,,,. He then starts at rf- 00 with y(rJ = 0, 
y’(rf) = c and integrates Eq. (1) in the opposite direction into rm. The continuity of 
y(r) and y’(r) at r, is obtained by matching y + = y(r,) for r > rm and y- = y(r,) 
for r-cr,, and E is made to vary till the “continuity equation” is satisfied: 
y ‘+ = y’-, where y’+ = y’(r,) for r > rm and y’- = y’(r,) for r < rm. 

The numerical integration of Eq. (1) is usually done by dividing the r-axis into 
equally spaced points ri. Where ritr - ri = h is the constant “step-length.” In each 
interval, Eq. (1) is replaced by the Numerov difference equation [2]. 

The aim of the present work is to propose an alternative to the Cooley shooting 
method. This alternative is largely inspired from that of Cooley, but it simplifies the 
procedure. It is based on a simple idea already used for the construction of the 
potential U(r) from the spectroscopic data by a quantum method [3]. It can be 
described as follows: 

We impose the boundary conditions at rs - 0 to y and y’. We use a trial value 
of E, and we observe the behavior of y(E; r) at the other boundary. By using one 
of the difference equations, the behavior at r - cc of the computed solution y(E; r) 
will never be the required exponentially decreasing function approaching the r-axis. 
y will either: (i) cut the r-axis at a “final” point rr; (ii) present an extremum at a 
point that we denote also by rf and that we call also the “linal” point. In a way, 
rf can be considered as the numerical “length” of the computed function y(E; r). 

In theory, when E is an eigenvalue E*, r,. must be infinity. When E varies around 
E*, rf varies with E and the representative curve of rr=f(E) shows an asymptote 
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at E = E*. The determination of the eigenvalue E* is reduced to the accurate 
“detection” of the asymptote of the curve rf=f(E). 

In practice, one may consider for a given potential U(r), the function rf=f(E), 
where the parameter E varies between zero and the dissociation D. The graph 
rf=f(E) presents a succession of asymptotes having for abscissas E,, E,, . . . . E,, . . . . 
the successive eigenvalues related to U. 

This approach may be replaced by an equivalent one: 
At r - co the radial Schrbdinger equation (1) becomes 

y”+(E-D)y=O, (3) 

where D = lim, _ m U(r). The general solution y(r) behaves, for any E, like 

y(r) - Aemwr + Be”‘, (4) 

A and B being two constants; w is given by w2 = D - E. 
By considering two points in this large r region, say rl = rf-- h and r2 = rf, one 

may determine A and B in terms of y, = y(r,) and y2 = y(r2) and deduce the ratio 

C=B/A= -(Y~/~~-Y~/z~)/(Y~z~-Y~zI), 

where zi = exp(wr,) and z2 = exp(wr,). 

(5) 

When we make E to vary, C varies with E. The variation of C(E) versus E 
(Fig. 1) shows that: (i) this curve presents a succession of asymptotes separated by 
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FIG. 1. Variations of C(E) versus E for an interval 225 <E< 325 cm-‘. C is computed for the 
Morse potential defined in the text. The eigenvalues are the abscissas of the intersections of C(E) with 
the E-axis. 
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a succession of zeros; (ii) an asymptote corresponds to C = co, A = 0, i.e., y = Be”“’ 
(this is the undesired divergent function); (iii) a zero corresponds to C = 0, B = 0, 
i.e., y = AepWr (this is the desired convergent function). Thus the zeros 
4, E,, E,, . . . of the function C(E) are the eigenvalues corresponding to the poten- 
tial U(r). 

The determination of the eigenvalues may be obtained either from the function 
Y/(E) or from the function C(E) defined above. Yet the search of the zeros of C(E) 
is numerically easier than that of the asymptotes of rf(E). 

For the numerical application, one has to face two problems: (i) The numerical 
integration of Eq. (1) for a given potential U, and a given trial energy E, (ii) The 
determination of the zeros of the function C = f( E) when E varies between zero and 
the dissociation D. 

For the first problem, we replace Eq. (1) by the Numerov difference equation (or 
by any other difference equation). If the function U(r) has no singularity at r = 0 
(like the Morse function [4]), we start at r,=O by taking y,= y(r,)=O and 
y, = y(r, + h) = c (an arbitrary constant for an unnormalized solution), and we step 
on towards r N co; if U(r) is singular at r = 0 (like the Lennard-Jones function 
[S]), we take r,kO. This integration is stopped when U(r) > E and when y(r) cuts 
the r-axis, or y(r) presents an extremum. In both cases, the two last values of y are 
used to calculate the function C(E) (Eq. (5)). The problem is then reduced to that 
of the determination of the zeros of C(E). 

Numerically this problem is an easy one. One can realize a first localization of 
these zeros by making E vary from zero to D and by looking to the intervals 
[ Ei, Ej+ , ] for which we have C(E,) x C( Ei + ,) < 0. Such intervals may contain a 
zero for C(E) or an asymptote. In order to eliminate the (undesired) asymptote, it 
is enough to consider E, = (E, + E, + ,)/2 and C(E,). If C(E,) is greater than C(E,) 
and C( Ej+ I ) (in absolute values), the interval [E,, Ei+ , ] contains an asymptote; if 
not, it contains a zero. The linear shape of C(E) in this interval allows one to use 
one or another of the conventional techniques to determine the zero of C(E) in the 
interval. 

This procedure was used to compute the eigenvalues for the model Morse 
function approaching the potential of the Liz ground state [6] 

U(r)=D[1-exp(-a(r-r,))]2, 

where a = 0.988 882 197 231 8,-‘. D = 605.555 cm-‘, re = 2.408 73 A. We give in 
Table I the eigenvalues computed by the present method (PM) for several values 
of n up to the highest vibrational level of the potential (n = 23). Our results are 
compared to the theoretical Morse eigenvalues EnM given by [4] 

EnM = w,(n + l/2) - w,x,(n + 1/2)2 

with w, = 48.668 88, w,x, = 0.977 888 cm-’ [6]. 
Our results are also compared to those, EIICSM, obtained by using the Cooley 

shooting method [7]. In the two applications the same Numerov difference equa- 
tion is used. with the same constant mesh-size h = 0.001 375 A. 
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TABLE I 

Computed Eigenvalues for the Vibrational Levels of the Morse Potential 

n EM AECSM CSM 
‘f AEPM PM 

‘f 

0 24.089 968 4.1 (-10) 12 3.4 (-10) 3.7 
5 238.097 728 5.4 (-8) 12 5.4 (-8) 4.6 

10 403.211088 2.0 (-7) 12 2.0 (-7) 5.5 
15 519.430 048 2.9 (-7) 12 2.9 (-7) 7.0 
20 586.754 608 2.0 (-7) 12 2.0 (-7) 10.0 
21 594.352 192 1.6 (-7) 12 1.6 (-7) 11.9 
22 599.994 ooo 1.14 (-7) 12 1.1, (-7) 13.9 
23 603.680 032 12 6.9 (-8) 18.7 

Note. For each level n, the Morse eigenvalue EM is given (in cm-‘) along with AE = E- EM for the 
present method (AEPM) and for that of the Cooley shooting method (AECSM). The “numerical length” 
rJ of the eigenfunction is also given (in A) for both methods. 

We conclude from this comparison that EnPM and EnCSM are virtually equal; this 
result is considered as a confirmation of the validity of the present work. 

By looking to the value of rf obtained for each n (Table I-last column), one can 
notice its variation with n; while in the conventional shooting method, it is usually 
predetermined for all the levels (rr= 12 A). The comparison of rfcsM (for the 
Cooley shooting method) and rfPM (for the present simplified shooting method) 
leads to the following remarks: 

(i) For one “run” (the integration of Eq. (1) for a given E), the CPU time is 
assumed to be proportional to rf The use of the new method requires less time 
than that of the conventional one for 0 d n d 20. 

(ii) The preceding remark is not true for n > 20. This is not an advantage for 
the conventional method, since it fails to obtain E,,; the prior guess of rr being 
insufficient to reach the appropriate “end point.” 

(iii) However, this gain in the efficiency does not generate a gain in the 
accuracy. This fact confirms the assertion of Osborne (and later on of Killingbeck) 
[a], who noticed that the round-off error in the Cooley shooting method is 
meaningless, it has no effect on the results. 

Similar results are obtained with RKR potentials, and the Lennard-Jones model 
potential function. This last potential is of particular interest for the present discus- 
sion since the Cooley method failed to obtain E, for the highest levels (n = 22 and 
23) [9] while the present method does. Even for n = 23, the use of the Numerov 
difference equation gives E,, with AE,, = 3 x lo-‘*, the “exact” E,, being that given 
in reference [7]. For this particular application rf reaches 53 A. Which is far 
beyond that (rf= 6 A) used in the conventional shooting method [9]. 

Compared to the conventional Cooley method, the present simpl$ed shooting 
method has the following advantages: (i) it avoids the starting problem; (ii) it 
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shoots in one direction instead of two; (iii) it avoids the “matching” problems used 
in the Cooley method, and replaces it by the search of the roots of the equation 
C(E) = 0; (iv) it does not make any prior guess for r, and rf; (v) it reaches the 
highest levels without any special treatment, even with the Numerov integrator; 
(vi) it may be used with any integrator. 
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